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ABSTRACT: Unusual subextensive configurational entropies
that vary with particle size and tend to zero per atom in
macroscopic samples are predicted for AMO3−zNz oxynitrides
with perovskite type crystal structures. These materials are
crystallographically disordered on the atomic scale, but local
anion order produces chains of M−N−M bonds that undergo
a 90° turn at each M cation, giving rise to subextensive
entropies in materials such as SrTaO2N, LaNbON2, and
EuWO1.5N1.5. A general Pauling ice-rules formula is used to
calculate the extensive molar entropies for other cases such as
SrMoO2.5N0.5 and BaTaO2N. The subextensive oxynitrides are
usefully classified as showing an “open order”, related to the correlated order of displacements in ferroelectric perovskites such as
BaTiO3. This raises the possibility that further open-ordered oxynitride or molecular structures may be accessible, and other
states such as spins and charges may also show novel open orders.

■ INTRODUCTION
Configurational entropies provide useful information about
atomic correlations and local order, and they may sometimes be
predicted from simple statistical models as in Pauling’s famous
calculation of the residual entropy of ice.1 Configurational
entropies for crystalline materials containing atomic disorder
are normally extensive, being proportional to the number of
atoms. A recent study has revealed that AMO3−zNz perovskite
oxynitrides contain chains of M−N−M bonds that undergo a
90° turn at each M cation, for which Pauling ice-rules predict
zero configurational entropy despite the apparent structural
disorder.2 This unusual observation prompted the full entropy
analysis presented here.
The ideal AMX3 perovskite structure consists of small M

cations at the vertices of a simple cubic cell bridged by anions X
at the centers of all edges and a large A cation at the cell center.
The lattice contains an infinite cubic network of vertex sharing
MX6 octahedra. Most perovskites are based on a single anion
such as oxide or fluoride, but transition-metal oxynitride
perovskites AMO3−zNz have been of recent interest for their
optical and electronic properties.3,4 Although full long-range
anion order is not observed in these materials, a recent analysis
of SrMO2N (M = Nb, Ta) showed that well-defined cis-MO4N2
octahedra are present, resulting in disordered zigzag MN chains
within two-dimensional perovskite layers.2 Perovskite-like
layers of disordered zigzag chains are also expected in the
K2NiF4-type oxynitrides Sr2NbO3N,5 Sr2TaO3N,6 and
Ba2TaO3N.

7 The constraint that the chains must turn by 90°
at each M site (with the same condition on zigzag MO chains in
AMO3−zNz when z > 1.5, e.g. LaNbON2)

8 is not observed in
other materials or in magnetic analogues of crystalline atomic
materials such as spin ices. Here we explore the configurational

entropies of the principal AMO3−zNz structural models that
arise from this unusual structural constraint. Some structures
have the unusual property of being subextensive, where the
entropy per atom tends to zero in macroscopic samples, while
others have extensive entropies that are estimated by extending
Pauling’s ice model. We also report a new classification of
structures based on their sets of long- and short-range
correlation vectors, from which the unusual “open ordered”
nature of the subextensive oxynitride structures is apparent.

■ RESULTS
i. Pauling Entropies of Perovskite Oxynitrides.

Configurational entropies of AMO3−zNz perovskites are
estimated by extending Pauling’s ice model to a general lattice
of N M cations, each connected to n other M cations by either
M-N-M or M-O-M bridges, so there are in total nN/2 bridges.
The number of M-N-M bridges emanating from each M cation
is denoted by x (x = 2z for AMO3−zNz perovskites) so that the
total number of M-N-M bridges is xN/2 and the fractions of M-
N-M and M-O-M bridges are f = x/n and (1 − f), respectively.
In the absence of local bonding constraints, the number of ways
of arranging the M-N-M bridges is

= !
! − !

W
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A mean-field approximation for the fraction of allowable
configurations is pN, where
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is the probability of an M ion having its bonding constraints
satisfied, and w is the number of ways of orienting M-N-M
bridges to the M cation’s n neighbors. Using Stirling’s
approximation (ln N! ≈ N ln N − N), the entropy is

= ≈ − −S k Wp Nk wf fln( ) ln[ (1 ) ]B
N

B
fn f n/2 (1 ) /2

As a check, identifying M-N-M and M-O-M bridges with donor
and acceptor hydrogen bonds in ice, there are w = 6 local
configurations per molecule, n = 4 hydrogen bonds for each O
atom, and a fraction f = 1/2 of donor hydrogen bonds; this
recovers Pauling’s famous estimate S = R ln(3/2) for hexagonal
water ice,1 which is accurate to within 1% of values from more
detailed calculations and experimental measurements.9

The two anion distributions found in AMO2N perovskites
(and AMON2 analogues) are represented by SrTaO2N and
BaTaO2N. In SrTaO2N types (including materials such as
SrNbO2N, EuTaO2N, EuNbO2N, and CaTaO2N),

10 the zigzag
M-N-M chains are confined to two-dimensional planes.2

Assuming that each possible structure is degenerate, ordered
structures such as that in Figure 1a are possible but statistically

unlikely (and have not been observed experimentally), and it is
overwhelmingly likely that any randomly generated structure
will show disorder, such as that shown in Figure 1b. This
corresponds to a cis variant of the square-ice lattice,11 where
M−N/M−O bonds map on to short/long O−H bonds in ice,
and only structures in which the two short O−H bonds are
adjacent (cis) to one another are allowed.12 This variant of the

well-known ice model13 is little explored, although other
variants have been devised for ferroelectric ordering in
KH2PO4

14 and for antiferroelectric orders.15 The AMO2N
model for SrTaO2N types has n = 4 bridges per M atom and a
fraction of M-N-M connections f = 1/2, but the cis constraint
restricts the number of allowed local configurations to w = 4
(the number of edges of a square) and gives S = 0, as noted
previously.2 Such structures that give S = 0 in the Pauling
approximation have subextensive entropies, as described in
section ii.
BaTaO2N does not show deviations from cubic symmetry

that would reflect confinement of the N atoms to two-
dimensional planes,16 so the zigzag TaN chains are assumed to
propagate in all three dimensions (Figure 1c). Two cis M-N-M
bridges link each metal ion on a cubic lattice so n = 6 and f =
1/3. The number of ways for an M cation to be linked by two
M-N-M bridges in a cis conformation is w = 12 (the number of
edges of an octahedron). These parameters give an extensive
(nonzero) configurational entropy of S = 2R ln(4/3) ≈ 0.58R
per mole (where R = 8.314 J K−1 mol−1 is the molar gas
constant). Hence, the molar configurational entropies of
AMO2N materials are predicted to vary from zero in the
two-dimensional SrTaO2N limit, to 0.58R in the disordered
cubic BaTaO2N structure. Intermediate situations might be
realized by quenching SrTaO2N from high temperatures where
some propagation of TaN chains between planes was
observed,2 so that the order is not purely two-dimensional.
In the proposed model for AMO1.5N1.5 perovskites such as

magnetoresistive EuWO1.5N1.5,
17 and the pigment (La0.5Ca0.5)-

TaO1.5N1.5,
18 each M cation is bonded to three nitrogen atoms

in a mutual cis conformationalso known as the fac (facial)
configuration of an octahedronso that the M-N-M bridges
define three-dimensional zigzag patterns on a cubic lattice
(Figure 1d). Each M cation has n = 6 neighbors, the fraction of
M-N-M bridges is f = 1/2, the number of ways for M to be
linked by x = 3 M-N-M cis bridges in a fac conformation is w =
8 (the number of faces of an octahedron), and so the Pauling
estimate of the entropy is S = 0.
In oxynitride perovskites with z = 0.5, such as

SrMoO2.5N0.5,
19 each M cation has one N neighbor. If these

are distributed equally in all three dimensions, then there are w
= 6 local configurations (the number of vertices of an
octahedron) for the connection of an M cation to its n = 6
neighbors; the fraction of M-N-M bridges is f = 1/6 and the
molar configurational entropy is S = (R/2) ln(3125/1296) ≈
0.44R. If the N atoms were confined to planes as in SrMO2N
(M = Nb, Ta), then the parameters would change to n = w = 4
and f = 1/4, and the molar configurational entropy would be S =
(R/2) ln(27/16) ≈ 0.26R. Confinement of N atoms to one of
the three cubic axes gives n = w = 2 and f = 1/2, giving another
case where S = 0. Detailed neutron studies of anion
distributions in AMO2.5N0.5 perovskites have not been reported,
so there is no experimental evidence for two- or one-
dimensional confinements of the N atoms.
The expected evolution of configurational entropy with

composition in AMO3−zNz perovskites is summarized in Figure
2. The striking feature is the suppression of a measurable
entropy near z = 1.5 due to the formation of subextensive
states, and at z = 1 and z = 2 when the minority anions are
confined to planes, as observed in SrTaO2N, LaNbON2, etc.
This is contrary to normal expectations for a disordered system
such as AMO3−zNz, where the maximum extensive entropy is
expected to occur at the z = 1.5 midpoint. The EuWO3−zNz

Figure 1. Models for the cis-anion chains in oxynitride perovskites,
where heavy/light lines correspond to M-N-M/M-O-M connections:
(a) long-range ordered and (b) disordered (but open-ordered)
configurations of cis-MN chains confined to two-dimensional planes
within AMO2N materials such as SrTaO2N. The solid and dashed
arrows on part b, respectively, represent long-range (ξ → ∞) and
short-range (ξ = 0) anion ordering correlations parallel to the
horizontal axis. This structure has subextensive configurational
entropy. (c) Three-dimensionally disordered cis-MN chains in
BaTaO2N; the fraction of M-N-M connections is 1/3, and the
structure has extensive configurational entropy. (d) Cross-linked
chains in the AMO1.5N1.5 perovskites where three mutually cis M-N-M
bridges meet at each M cation and define three-dimensional zigzag
patterns on a cubic lattice. The entropy is subextensive, and the
structure has three-dimensional open order.
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series, which has a wide composition range 1.5 < z < 2.2
reflecting variable cation oxidation states, is thus predicted to
show two configurational entropy minima at z = 1.5 and 2.0.17

ii. Subextensive Perovskite Oxynitrides. Several of the
above models are predicted to have zero configurational
entropy, but it is unclear in the Pauling approach whether a
small finite entropy would be obtained from a more detailed
treatment. An exact result is obtained by noting that the
bonding constraints for structures such as those in Figure 1b
and d generate strictly alternating M-N-M and M-O-M bridges
along the rows of the lattice. Hence, there are only two possible
sequences for each row. In the SrTaO2N model where the MN
chains are confined to layers as in Figure 1b, the number of
configurations of an L × L × L lattice of L layers each

containing 2L rows is W = 22L
2

. For N = L3 M cations, the
configurational entropy is S = kB ln W = 2N2/3kB ln 2, where kB
is Boltzmann’s constant. This type of entropy is “subextensive”,
as the exponent of the number of atoms N is less than one, so
that the entropy per atom becomes vanishingly small for large
N, in asymptotic agreement with the Pauling result. Particles
containing N formula units have a configurational entropy of S
= (2R ln 2)/N1/3 per mole of SrTaO2N, showing that the
entropy of such a subextensive material is strongly dependent
on the particle size. A single crystal containing one mole (N =
NA, the Avogadro number) of SrTaO2N has S ≈ 10−7R, which
would not be measurable, but a powder of 40 nm nanoparticles,
each containing N ≈ 106 formula units, has a significant
configurational entropy of S ≈ 0.1R per mole of SrTaO2N.
The configurational entropy of the AMO1.5N1.5 perovskite

model is similarly subextensive. Here the M-N-M bridges define
three-dimensional zigzag patterns on a cubic lattice, and these
bonding constraints imply alternating M-N-M and M-O-M
bridges along any row of the cubic lattice. Following the
previous argument, the exact number of configurations is W =

23L
2

for 3L2 rows in an L × L × L cubic lattice and so S =
3N2/3kB ln 2, which is again subextensive. Hence, the molar
configurational entropy of EuWO1.5N1.5, like that of SrTaO2N,
is predicted to be strongly dependent on the particle size.
Confinement of N atoms to one of the three cubic axes in
AMO2.5N0.5 perovskites would also create subextensive states,
although no experimental evidence for this partial anion order
has been reported.

iii. Open Order. The unusual nature of the anion ordering
in oxynitride perovskites is illustrated by the subextensive
configurational entropies predicted above. Subextensive phases
form an intermediate category of translationally ordered matter,
between perfectly ordered crystals such as β′-CuZn (β′-brass)
and quasicrystals, which ideally have zero configurational
entropy, and disordered crystals, such as the random alloy β-
CuZn (β-brass), which have extensive configurational en-
tropies. The configurational entropies of subextensive materials
are practically zero in the macroscopic limit, but they appear
crystallographically disordered. Disordered packings of well-
ordered chains or layers (e.g., random stacking of close-packed
slabs is observed in many intercalation compounds such as the
battery cathode material LiCoO2) also have subextensive
entropies, but the unusual nature of the oxynitrides is apparent
from the crystal directions in which atoms are correlated. The
model for oxynitride planes in SrTaO2N (Figure 1b) shows that
M-N-M and M-O-M bridges alternate perfectly along vectors in
the vertical and horizontal directions but order over only a few
unit cell lengths in other in-plane directions defined by sums or
differences of the vertical and horizontal vectors. This is
expressed below using correlation lengths ξ, where the
probability that atoms at two sites separated by distance d
satisfies a particular ordering rule is proportional to exp(−d/ξ).
Perfect crystals of linear dimension La (where a is the cubic

lattice spacing) have long-range order with ξ ≫ La (written
here as ξ → ∞) in all lattice directions, whereas disordered
crystals have zero or short-range correlations ξ ≪ La (written
as ξ = 0) in all directions. The correlation lengths in all possible
[UVW] directions (for vector Ua + Vb + Wc, where a, b, and c
are the unit cell vectors and U, V, andW are integers) fall into ξ
→ ∞ and ξ = 0 sets. For perfectly ordered crystals such as β′-
CuZn, all [UVW] vectors are in the ξ → ∞ set and the ξ = 0
set is empty. In mathematical terminology, these sets are
“closed” under addition or subtraction operations, as all sums
or differences of [UVW] vectors fall into the same ξ→∞ set as
the [UVW] vectors themselves, and the null ξ = 0 set is also
closed under these operations. The two sets are also closed
under addition or subtraction operations for disordered
structures such as that of β-CuZn, as all [UVW] vectors fall
in the ξ = 0 set.
A full classification of the subextensive states for two-state

(Ising) orderings (e.g., of O/N at anion sites in the oxynitride
models in section ii) along the crystal axes is shown in Table 1.
Perfectly ordered alternating chains parallel to the axes can be
formed in up to c = 3 directions. Atomic planes defined by two
of these chain-ordered axes may be fully ordered, so the
maximum possible number of ordered planes p is cC2. For c = 2
axes, only the plane defined by these axes may be ordered; for
example, only the xy plane for chains parallel to the x and y
axes, but for c = 3 directions, up to three planes (xy, xz, and yz)
may be ordered. The p = 3 condition implies the full long-range
order of a perfect crystal.
Structures with subextensive entropy have ξ → ∞ in some

directions within the crystal and ξ = 0 in others, and one of the
two sets of [UVW] vectors is not closed (hence “open”) under
addition or subtraction operations. Disordered stackings of well
ordered chains or planes have an open ξ = 0 set. For instance,
when c = 2 and p = 1, long-range ordered layers stacked
randomly in the z direction have all [UV0] vectors in the ξ →
∞ set, so this is closed, but the ξ = 0 set is open, e.g. because
the subtraction of [101] from [201] gives [100] in the ξ → ∞
set. However, the subextensive oxynitrides fall into a separate

Figure 2. Plot of predicted molar configurational entropy against
composition for AMO3−zNz perovskites. Data are shown per mole of
M cations, with the minority anions (N for z < 1.5, O for z > 1.5)
constrained in cis conformations to two dimensions (2Dopen
symbols, dashed lines) or to three dimensions (3Dfilled symbols,
solid lines).
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class where the ξ → ∞ set is open; for example, for xy-plane
oxynitride layers such as those in Figure 1b with c = 2 and p =
0, there are ξ → ∞ vectors parallel to [100] and [010] but not
to [110] or [1 ̅10]. ξ = 0 vectors also run parallel to [100] and
[010], as shown in Figure 1b, and in all other directions, so the
ξ = 0 set contains all [UVW] vectors and is thus closed.
The above set closure conditions are usefully shortened to

“closed/open order/disorder”, where “closed/open” refers to
whether or not a set of [UVW] vectors is closed under addition
or subtraction operations, and “order/disorder” refers to the ξ
→ ∞/ξ = 0 sets. Hence, perfectly ordered crystals and random
alloys show both closed order and closed disorder. Sub-
extensive states have open order or disorder; those based on
random stackings of well-ordered chains or layers have open
disorder, but the oxynitride structures are distinctive from other
types of translationally ordered structure by having open order.
Although subextensive atomic orders are rare in simple

solids, analogous displacive orders are better-established and
provide useful comparisons. For example, the formation of
VO2+ vanadyl groups within chains of corner-linked VO6
octahedra gives rise to randomly oriented O- - -V-O- - -V-
O- - -V-O- - -V-O chains parallel to a single axis in VO-
(H2AsO4)2,

20 corresponding to the c = 1 case in Table 1.
The open-ordered c = 3 AMO1.5N1.5 structure is directly related
to ferroelectric perovskites such as BaTiO3 and LiNbO3. In
AMO1.5N1.5, each M cation is connected to three mutually cis N
atoms, and three mutually cis O atoms, while local displace-
ments of Ti toward an octahedral face in BaTiO3 result in three
mutually cis short Ti−O bonds and three mutually cis long Ti--
O bonds. However, the long-range orderings of the constituent
units along rows in the two cases are opposite to one another
(Figure 3). In the oxynitrides, the long-range anion-ordered
structure N-M-O-M-N-M-O-M-N creates antiferroelectrically

aligned dipoles →←→← (→ = N-M-O), whereas the O- - -Ti-
O- - -Ti-O- - -Ti-O- - -Ti-O structure in BaTiO3 constitutes
ferroelectric ordering of the dipoles →→→→ (→ = O- - -Ti-
O).
BaTiO3 undergoes a series of transitions between phases of

different symmetry on heating: rhombohedral (R) →
orthorhombic (O) → tetragonal (T) → cubic (C). The first
three structures are ferroelectric while the cubic phase is
paraelectric, and they have been described using an order−
disorder model of dipole chains.21 In the limit that the dipole
correlations within chains parallel to the three cubic axes (c = 3
in Table 1) are of long-range, as proposed in a recent
computational study,22 the sequence of phase transitions
corresponds to decreasing the number of ordered planes: p =
3 → 2 → 1 → 0 on heating. The p < 3 phases have
subextensive configurational entropies, and the measured
BaTiO3 transition entropies are found to be consistently
small (0.02R−0.06R);23 the recent study suggested that
changes in the phonon spectrum are the main contribution.22

This relationship raises the question of whether ordered phases
of AMO1.5N1.5 analogous to the three ferroelectric phases of
BaTiO3 can be formed (see Figure 3). Achieving long-range
order of anions is a future challenge for perovskite oxynitride
chemistrycareful high-temperature annealing studies will be
needed to investigate this possibility.

■ DISCUSSION
Translationally ordered matter falls into three classes on the
basis of the exponent s for the variation of configurational
entropy with number of atoms, S ∼ Ns. Classical ordered and
disordered crystals respectively have s = 0 and 1, and the
intermediate class of subextensive matter described above has 0
< s < 1. Subextensive phases represent the most highly
correlated states of matter that are possible without adopting a

Table 1. Types of Translationally-Ordered Structures,
Classified by the Number of Orthogonal Axes along Which
Long-Range Ordered (ξ → ∞) Chains Are Oriented (c), and
the Number of Long-Range Ordered Planes Containing
These Chains (p)a

c p
S/

kB ln 2
ordered (ξ → ∞)

set closure

disordered
(ξ = 0) set
closure

atomic and
displacive
examples

0 0 N closed (null) closed β-CuZn
1 0 N2/3 closed open VO(H2AsO4)2
2 0 2N2/3 open closed SrTaO2N
2 1 N1/3 closed open LiCoO2

3 0 3N2/3 open closed EuWO1.5N1.5, C-
BaTiO3

3 1 N2/3 +
N1/3

open closed T-BaTiO3

3 2 2N1/3 open closed O-BaTiO3

3 3 0 closed closed (null) β′-CuZn, R-
BaTiO3

aThe configurational entropy in each case is shown for Ising-like
systems of N atoms, each having two possible states (e.g. oxide/nitride
site occupation). The open or closed nature of the sets of [UVW]
lattice vectors with correlation length ξ →∞ or ξ = 0 is indicated (see
text). The c = p = 0 (top row) and c = p = 3 (bottom row) cases
correspond to normal disordered and ordered crystals with extensive
and zero configurational entropies, respectively. The intermediate
cases have subextensive entropies, and the unusual oxynitrides also
have open sets of ξ → ∞ vectors (“open order”). Examples of atomic
and displacive orderings are shown in roman and italic text,
respectively.

Figure 3. Illustrations of the structural analogy between correlated
anions in AMO1.5N1.5 and atomic displacements in ferroelectric
perovskites: (a) an oxynitride perovskite plane showing M-N-M/M-O-
M connections as heavy/light lines; (b) an analogous ferroelectric
plane in BaTiO3, obtained by replacing N-M-O connections from left
to right and top to bottom in part a with O- - -Ti-O connections in
part b. Short Ti−O/long Ti- - -O bonds are shown as heavy/light lines.
Both structures have subextensive configurational entropies. The
correlated displacive order in part b gives rise to a net electrical
polarization for each plane as displayed by the arrows, whereas in part
a the chains are antiferroelectric but the relative order of dipoles is
analogous. The drawn configurations have long-range order between
the vertical chains but zero or short-range correlations between
successive horizontal chains. Part b illustrates the order in the
intermediate orthorhombic and tetragonal phases of BaTiO3, where
chain polarizations are long-range ordered parallel to two and one of
the three perovskite axes, respectively.
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full long-range ordered crystal structure. Within the sub-
extensive category, open atomic order is unusual, as it requires
atoms to participate in intersecting well-ordered chains or
layers without generating long-range order in intermediate
directions. The two-dimensional AMO2N (Figure 1b) and
three-dimensional AMO1.5N1.5 (Figure 1d) structures are
canonical examples of atomically open-ordered arrangements.
In the latter model, each M atom lies at the intersection of
three perfectly ordered N-M-O-M-N-M-O-M-N chains parallel
to the cubic axes, but no long-range order arises in any other
direction. Open-ordered structures arise spontaneously in these
oxynitrides due to the strong preference for cis-N-M-N
bonding. We note that molecular chemistry can be used to
synthesize larger units that possess the same geometric
characteristics, such as cis isomers of square planar MX2Y2
complexes, or fac-MX3Y3 octahedra, and open-ordered packings
may result when either X...Y or X...X and Y...Y intermolecular
interactions dominate.
Direct magnetic analogues of the atomic and displacive open

orders on simple cubic lattices are not known and present a
challenge for the design of new magnetic systems. Open spin
orders on frustrated lattices have been reported; for example,
antiferromagnetic Ising models (AFMIMs) on a honeycomb
lattice24 and on an elastic triangular lattice25 have subextensive
entropies which scale as N1/2 per layer (equivalent to the N2/3

scaling for the SrTaO2N-type structure in Results section ii,
where stacks of layers were considered).
Throughout this work it has been assumed that the energies

of all configurations are equal, so configurational contributions
to the free energy are insufficient to drive an ordering transition
on cooling. A recent study of the elastic AFMIM identified an
“order by disorder” mechanism by which the degeneracy of the
ground states may be lifted, leading to a stabilization of partially
disordered zigzag arrangements of ferromagnetically aligned
spins stabilized by the phonon contribution to the free
energy.24 In the unfrustrated perovskites displaying open
anion or displacive orders, Coulombic forces are likely to
drive the system to a full long-range closed order, as observed
in the low-temperature rhombohedral form of BaTiO3.
Many other atomic variables such as ionic charges in mixed-

valent materials and orbital states (and their consequent Jahn−
Teller displacements) can show order/disorder phenomena on
periodic lattices. Open charge orders could be of interest in the
context of charge fluctuation mechanisms for superconductivity
in doped copper oxides. Arrangements of larger objects such as
colloidal particles in optical crystals26 can also show classical
ordered and disordered states, and again it is intriguing to
consider whether open orders could be achieved on the
mesoscale and what the resulting properties might be.

■ CONCLUSIONS
AMO3−zNz perovskite oxynitride structures provide interesting
examples of ice-type disorder on square or cubic lattices. The
local cis-coordination rule gives rise to predicted subextensive
entropies in materials such as SrTaO2N, LaNbON2, and
EuWO1.5N1.5. The subextensive structures are usefully classified
as showing an “open order”, related to the correlated local
order of displacements in ferroelectric perovskites such as
BaTiO3.
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